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Abstract. The activation gaps for fractional quantum Hall states at filling fractionsν = n/(2n+1)
are computed for heterojunction, square-quantum-well, and parabolic-quantum-well geometries,
using an interaction potential calculated from a self-consistent electronic structure calculation in
the local density approximation. The finite thickness is estimated to make a∼30% correction to
the gap in the heterojunction geometry for typical parameters, which accounts for roughly half of
the discrepancy between the experiment and theoretical gaps computed for a pure two-dimensional
system. Certain model interactions are also considered. It is found that the activation energies
behave qualitatively differently depending on whether the interaction is of longer or shorter range
than the Coulomb interaction; there are indications that fractional Hall states close to the Fermi sea
are destabilized for the latter.

1. Introduction

A fundamental aspect of the phenomenon of the fractional quantum Hall effect (FQHE) [1] is
the existence of a gap at certain Landau level fillings in the excitation spectrum for a disorder-
free system, which is responsible for properties like fractional charge and the fractionally
quantized Hall resistance [2]. An understanding of the physical origin of the gap lies at the
heart of the FQHE problem.

The composite-fermion (CF) theory [3–5] gives a simple intuitive explanation for the
existence of the gaps. First, electrons capture an even number of vortices to become composite
fermions, since this is how they can best screen the repulsive interaction. As a consequence
of the phases produced by the vortices, composite fermions experience a reduced effective
magnetic field. They form Landau levels (LLs) in the reduced magnetic field, called CF-
LLs in order to distinguish them from the Landau levels of electrons. A gap in the excitation
spectrum occurs whenever composite fermions fill an integer number of CF-LLs. This provides
an excellent description of the phenomenology of the FQHE; in particular, it gives a simple
explanation for the observed fractions atν = n/(2pn ± 1), which correspond simply ton
filled LLs of composite fermions carrying 2p vortices. Thus, an effectively single-particle
description of the strongly correlated electron liquid becomes possible in terms of composite
fermions. The CF physics was spectacularly confirmed also in tests against exact results known
for finite systems from numerical diagonalization studies. The CF wave functions were found
to have close to 100% overlap with the exact eigenfunctions, and predicted energies with an
accuracy of better than 0.1% for systems of up to 12 particles [4, 6]. A comparison with
exact-diagonalization results established that the gaps predicted by the CF theory are accurate
to within a few per cent. However, it is only relatively recently that it has become possible
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to make more detailed quantitative comparisons between theory and experiment. The main
hurdle was the lack of a suitable method for dealing with large systems of composite fermions.
In recent years we have developed a technique [7] that allows us to carry out Monte Carlo
calculations on systems containing as many as 60 composite fermions, which are sufficiently
large for obtaining reliable information on FQHE states at least up to 6/13. This paper reports
on the results of our Monte Carlo calculations for the gaps of various FQHE states, extending
our previous work [8] as well as correcting some of the assertions made therein. The main new
feature in this work is that we take account of the non-zero thickness of the electron system
by determining the effective interaction within the self-consistent local density approximation
(LDA). The calculations contain no adjustable parameters; the only inputs are the shape of the
confinement potential (heterojunction, square quantum well, or parabolic quantum well) and
the electron density.

There is a long history of calculation of gaps in the FQHE, dating back to the work of
Laughlin [2]. Accurate estimates for the gap of the FQHE state atν = 1/3 for a strictly
two-dimensional (2D) system, where the interaction between electrons is of ‘pure Coulomb’
form (as opposed to an ‘effective’ interaction after non-zero thickness is taken into account),
were obtained by Morf and Halperin [9] in a Monte Carlo calculation, using the variational
wave functions of Laughlin, and by Haldane and Rezayi [10] from small-system, exact-
diagonalization calculations. For lack of accurate wave functions, the gaps of other FQHE
states could be estimated initially only from exact-diagonalization calculations [11]. However,
as one goes along the sequenceν = n/(2n+1), it takes larger and larger numbers of particles to
get reliable values for the gaps; since the size of Hilbert space increases exponentially withN ,
the exact-diagonalization studies are of little use for largen. For example, only two systems
can be studied at present for 3/7 (with 9 and 12 particles), and no exact diagonalization is
possible for 4/9, which requires at least 16 particles. The gaps for the pure Coulomb interaction
were computed by Jain and Kamilla [7] for several FQHE states within the framework of the
composite-fermion theory, which we believe to provide accurate estimates for an idealized
zero-thickness system with no disorder.

It has been well known for quite some time that while the pure Coulomb gaps do give a
rough estimate of the magnitude of the experimental gaps, certain quantitatively significant
effects present in real experiments must be incorporated for a more detailed comparison.
While these do not require any new conceptual input, it is important to ascertain the relative
importance of these effects, and to convince ourselves that we are not missing any physics.
The aim of this work is to investigate one of these effects, namely the modification in the inter-
electron interaction originating from the finite transverse extent of the electron wave function,
in as much detail as is possible at the present. Since the early calculations of Zhang and Das
Sarma (ZDS) [12] and Yoshioka [13], much of the work dealing with the finite thickness has
employed model interaction potentials, e.g. the ZDS potentiale2/(λ2 + r2)1/2, which simulate
the effect of non-zero thickness by softening the interaction at short distances. The parameter
characterizing the thickness in these potentials must be determined from other considerations.
Very recently, Ortalanoet al [14] carried out a calculation of the gap at 1/3 by feeding into
their exact-diagonalization study the interaction that they obtain from a self-consistent LDA
calculation. Park and Jain [8] computed the gaps of various other FQHE states using the ZDS
model, fixing the thickness parameterλ by requiring that the gap for the 1/3 state agree with
that obtained by Ortalanoet al. This produced an excellent agreement between the theoretical
and experimental gaps. However, a comparison with the more realistic Stern–Howard [15,16]
interaction led Morf [17] to conclude that the value of theλ used in this work was too large by
approximately a factor of two, and therefore the comparison with experiment was not valid and
the agreement fortuitous. To resolve this issue, and also to obtain reliable values for the gaps,
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we have computed the gaps directly from the interaction obtained from the self-consistent LDA.
It is found that the non-zero thickness makes a 20–50% correction for typical experimental
parameters, reducing the discrepancy between pure 2D theory and experiment approximately
by half, but the theoretical gaps still significantly overestimate the gaps [18].

There are other effects that will diminish the gaps beyond their values obtained in the
present work. One assumption here is that the electronic states are confined to the lowest LL,
which is indeed a valid approximation in the limit of sufficiently large magnetic fields, but, at
typical experimental fields, Landau level mixing may not be negligible. It is expected that the
CF particle and hole excitations will lower their energies by an admixture with higher Landau
levels. Previous estimates [19] suggest that it is roughly a 20% effect. The omnipresent
disorder, neglected in the present study, is also expected to reduce the gaps. A reliable theor-
etical treatment of these issues is beyond the scope of the present work.

We also calculate gaps for different kinds of model potentials, some differing from the
Coulomb interaction in the short-distance behaviour and others in the long range. The qual-
itative behaviours give an indication of a relation between the range of the potential and the
stability of the CF sea.

The paper is organized as follows. In section 2, we give a brief account of the computational
methods, mentioning, in particular, certain modifications in the self-consistent LDA in this
work, appropriate for the problem at hand; a summary of the CF wave functions and the
Monte Carlo method is also given. Section 3 gives our results for gaps for various densities in
three sample geometries: heterojunction, square quantum well, and parabolic quantum well.
Section 4 discusses a comparison of our results with experiment, Section 5 contains gaps for
several model interactions, and the paper is concluded in section 6.

2. Computational details

For completeness, we provide a brief outline of our computational methods. Readers interested
in further details can find them in the literature.

2.1. Self-consistent LDA

Following the standard approach [16, 20], one solves self-consistently the one-dimensional
Schr̈odinger and Poisson equations for the direction perpendicular to the plane of the 2D
electron system (taken along thez-axis here):(

− h̄
2

2m

d2

dz2
+ Veff (z)

)
ξ(z) = Eξ(z) (1)

Veff (z) = VW(z) + VH(z) + VXC(z) (2)

d2VH(z)

dz2
= −4πe2

ε
[ρ(z)− ρI (z)] (3)

ρ(z) = N |ξ(z)|2. (4)

Here,VH ,VW , andVXC are the Hartree, confinement, and exchange–correlation potentials, and
ρI is the density of the ionized donor atoms. The exchange–correlation potential is assumed
to depend only on the local density, which is usually a quite reasonable approximation.

The equations above have been slightly modified from the ones used at zero magnetic
field [14] to suit our present purpose. In the past, it has been assumed that the effective
potential was not significantly affected by application of the magnetic field, and the zero-field
effective interaction was used for high magnetic fields as well [14]. We make a few changes
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from the standard zero-field calculation, which we believe are appropriate when discussing
electrons confined to the lowest Landau level. These are as follows:

(i) At zero magnetic field, electrons occupy one or several subbands depending on the
density. In our calculations below, we assume that they occupy only one subband. This
would clearly be unphysical for sufficiently large densities at zero magnetic field, but is
appropriate at large magnetic fields, where only the lowest LL is occupied. This makes
no difference at low densities, when the self-consistent solution at zero field also involves
only one subband, but the results are affected somewhat at large densities. We have not
investigated how much of a quantitative difference this alteration makes at high densities.

(ii) We assume that electrons are fully polarized. This of course is motivated by the fact that
we are interested in fully polarized electronic states, which is appropriate for sub-unity
filling factors at high magnetic fields.

We further make the following approximations.

(iii) For the exchange–correlation energy we use the form given by Voskoet al [21] rather
than the more usual one by Hedin and Lundqvist [22], the former being more appropriate
for spin-polarized electrons. This does not make appreciable quantitative difference;
in fact, leaving out the exchange–correlation corrections entirely is also a rather good
approximation for the present problem.

(iv) In heterojunctions, the electron wave function has a small amplitude on the AlGaAs side,
with most of the wave function being confined to the GaAs side. A proper treatment will
require taking a position-dependent dielectric function as well as a position-dependent
mass, and replacing the step function change in these quantities at the interface by a smooth
function in order to ensure that the calculations are technically well controlled [20]. In
order to avoid these complications, we have assumed that the wave function is entirely
confined on one side of the junction; this was found to be an excellent approximation
in earlier calculations [20]. Similarly, for the quantum well potential, we have assumed
infinite barriers, keeping electrons out of the insulator. This should be a reasonable
approximation provided the electron energies are deep in the well.

(v) The depletion charge density in experimental samples is unknown, but often small [23]; we
have set it to zero in our calculations. This may not be a good approximation especially
when the electron density becomes comparable to the depletion layer charge density.
Image charge effects due to a slight mismatch of the dielectric function at the interface
have also been neglected.

The above equations are solved by an iterative procedure until convergence is obtained
for ξ(z). The effective interaction potential is then given by

VLDA(r) = e2

ε

∫
dz1

∫
dz2

|ξ(z1)|2|ξ(z2)|2
[r2 + (z1− z2)2]1/2

. (5)

The LDA interaction for the heterojunction geometry is shown in figure 1.

2.2. Composite-fermion wave functions

We compute the energy gaps by evaluating the expectation values of the effective interaction
energyV = ∑

j<k VLDA(rjk) in the composite-fermion wave functions for the ground and
excited states:

1 = 〈8
CF−ex |V |8CF−ex〉
〈8CF−ex |8CF−ex〉 −

〈8CF−gr |V |8CF−gr〉
〈8CF−gr |8CF−gr〉 (6)
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Figure 1. The effective interaction,VLDA(r) for the heterojunction geometry for densities ranging
from 1.0× 1010 cm−2 to 1.0× 1012 cm−2. The interaction is shown in units of the Coulomb
interaction and the distance is given in units of the magnetic length atν = 1/3, l1/30 .

where8CF−ex and8CF−gr are the CF wave functions for the excited and the ground states,
respectively.

We use the spherical geometry in this work, which considersN electrons on the surface
of a sphere, moving under the influence of a strong radial magnetic field. Fully spin-polarized
electrons and a complete lack of disorder are assumed. The flux through the surface of the
sphere is defined to be 2Qφ0, whereφ0 = hc/e is the flux quantum and 2Q = integer. The
single-particle eigenstates are the monopole harmonics [24], denoted byYQ,n,m(�), where
n = 0, 1, . . . is the LL index,m = −Q − n,−Q − n + 1, . . . ,Q + n labels the 2Q + 2n + 1
degenerate states in thenth LL, and� represents the angular coordinatesθ andφ.

According to the CF theory [3], the problem of interacting electrons atQ is equivalent
to that of weakly interacting composite fermions at effective monopole strengthq = Q −
p(N − 1). The many-body CF states can be constructed from the following ‘single-CF’ wave
functions [7]:

YCFq,n,m(�j ) = Ỹq,n,m(�j )
∏
k

′
(ujvk − vjuk)p (7)

Ỹq,n,m(�j ) = Nqnm(−1)q+n−m (2S + 1)!

(2S + n + 1)!
u
q+m
j v

q−m
j

×
n∑
s=0

(−1)s
(
n

s

)(
2q + n

q + n−m− s
)
usj v

n−s
j U sjV

n−s
j (8)

N2
qnm =

(2q + 2n + 1)

4π

(q + n−m)!(q + n +m)!

n!(2q + n)!
(9)

Uj = p
∑
k

′ vk

ujvk − vjuk +
∂

∂uj
(10)

Vj = p
∑
k

′ −uk
ujvk − vjuk +

∂

∂vj
. (11)
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Here the prime denotes the conditionk 6= j , p is an integer,S = q + p(N − 1)/2, and the
spinor coordinates are defined as [25]

uj ≡ cos(θj /2) exp(−iφj/2) vj ≡ sin(θj /2) exp(iφj/2).

The binomial coefficient
(
α

β

)
is to be set to zero ifβ > α or β < 0. The subscriptn in YCFq,n,m

labels the CF-LL index. Note that the wave function of thej th composite fermion involves the
coordinates ofall electrons. In the form written above, the CF wave function is fully confined
to the lowest electronic LL.

The wave functions for the system of many composite fermions are the same as the
corresponding wave functions of non-interacting electrons atq, but with Yq,n,m replaced
by YCFq,n,m. The incompressible ground state consists of an integer number of filled LLs of
composite fermions. The excited states are constructed by promoting one composite fermion
from the topmost occupied CF-LL to the lowest unoccupied CF-LL, which creates a CF
particle–hole pair. We are interested in the energy of this excitation in limit where the distance
between the CF particle and the CF hole is very large, so we consider the excited state in
which they are on the opposite poles of the sphere. Prior to an extrapolation of our results
to the limit ofN → ∞, we correct for the interaction between the CF particle and the CF
hole, which amounts to a subtraction of−(2p + 1)−2/2ε

√
Ql0, the interaction energy for two

point-like particles of chargese/(2p + 1) and−e/(2p + 1) at a distance 2R, whereR = √Ql0
is the radius of the sphere. We also correct for a finite-size deviation of the density from its
thermodynamic value, by multiplying by a factor

√
(ρ/ρN) = √(2Qν/N), whereρ is the

thermodynamic density andρN is the density of theN -particle system.
We emphasize here that both the ground- and excited-state wave functions abovecontain

no adjustable parameters; they are completely determined by symmetry in the restricted Hilbert
space of the CF wave functions. Also, since the wave functions constructed here are strictly
within the lowestelectronicLL, their energies will provide strict variational bounds. Of
course, there is no variational theorem for the energydifference, but the CF wave functions are
known to be extremely accurate; they produce gaps with an accuracy of a few per cent for a
given interaction potential, at least for 1/3, 2/5, and 3/7, for which exact results are known for
finite systems. For these fractions, any error in the gaps will owe its origin mainly to various
approximations in our calculation of the effective interaction; insofar as finite-width effects
are concerned, we expect our gap calculations to be reliable at the level of 20% [14].

An unusual feature of the composite-fermion wave functions is that they are independent
of the actual form of the interaction, since they have no parameters to adjust. While this may
seem objectionable at first sight, it captures the fact that theactualwave functions (as obtained,
say, in exact-diagonalization studies) are also largely insensitive to the form of the interaction.
This rigidity against perturbations can be understood physically by analogy to the integer QHE.
The electron wave functions at integer filling factors are quite independent of the interaction
provided that it is small compared to the cyclotron gap (i.e., LL mixing is negligible). In the
CF theory, this would imply that the interaction dependence of the wave function is negligible
so long as the residual interaction between the composite fermions is weak compared to the
CF cyclotron gap. For then/(2n + 1) states with largen, the CF cyclotron gap may not
necessarily be large compared to the inter-CF interactions, and the actual wave functions may
have some dependence on the form of the interaction. While the actual wave functions are not
known for these states, it may be possible to investigate the issue in a variational approach by
incorporating some variational degree of freedom which allows mixing betweenCF-LLs to
determine the extent to which the CF wave function is perturbed. We will, however, continue
to work with the unperturbed composite-fermion wave functions here, with the caveat that the
results may not be completely reliable at largen (we suspect though, that the intrinsic error in
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the CF wave function may still be small compared to the uncertainty arising from Monte Carlo
methods and from various approximations involved in evaluation of the effective interaction).

2.3. The Monte Carlo method

The Monte Carlo method employed in our work is quite standard. Unfortunately, it is not
possible to use in our problem certain clever time-saving techniques for updating fermion Slater
determinants [26], since moving a single particle alters all elements of the determinant, due to
the strongly correlated nature of the problem (remember, the wave function of each composite
fermion depends also on the positions of all other composite fermions). Therefore, we must
compute the full Slater determinant at each step, which takes O(N3) operations rather than
O(N2). However, we are able to improve on the accuracy by moving all particles at each step.
We note that the ground- and excited-state energies must be evaluated extremely accurately in
order to get a reasonable estimate for the gap, which is an O(1) quantity. We also utilize the
fact that the ratio of the gap to a reference gap (say, for the pure Coulomb interaction) has much
smaller variance than the gap itself from one Monte Carlo run to another. A typical calculation
of the energy gap requires 107 Monte Carlo steps, taking up to 200 hours of computer time on
a 500 MHz workstation.

Since there are no edges in the geometry being studied, we expect the gap to have a linear
dependence onN−1 to leading order, which is also borne out by our results. Therefore, we
obtain the thermodynamic limit by a linear fit to the finite-system gaps. The error is determined
by the standard least-squares method.

3. Results

The only inputs in our calculations are the electron density and the sample geometry. We have
computed the gaps for a range of densities (from 1.0× 1010 cm−2 to 1.0× 1012 cm−2) and for
three sample geometries most popular in experiments: heterojunction, square quantum well
(SQW), and parabolic quantum well (PQW). All results have been obtained by an extrapolation
of the finite-system results to the limitN−1→ 0, as shown for the case ofν = 2/5 in figure 2;

0.00 0.03 0.06 0.09 0.12
1/N

0.4

0.5

0.6

0.7

0.8

0.9

1.0

∆/
∆ 0

Figure 2. Extrapolation of the activation gap atν = 2/5 to the thermodynamic (N−1→ 0) limit for
the heterojunction geometry for densities (starting from top) of 1.0×1010 cm−2, 3.0×1010 cm−2,
1.0× 1011 cm−2, 2.0× 1011 cm−2, 5.0× 1011 cm−2, and 1.0× 1012 cm−2. The Monte Carlo
uncertainty is smaller than the symbol size and the solid line is the best straight-line fit. Systems
of up to 50 composite fermions.
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systems of up to 50 particles were considered for the extrapolation. Figures 3, 4, and 5 show
the gaps as a function of density for several sample geometries. Since the ratios1/10 are
determined quite accurately, as seen in figure 2, the uncertainty in1 comes almost entirely
from 10, for which we use values given in reference [7]. For a typical sample density of
2×1011 cm−2, the 1/3 gap is reduced roughly by 30% in a heterojunction, by 30% in a square
quantum well of width 300 Å, and by 50% in a parabolic quantum well. As expected, the gaps
approach their Coulomb values at small densities in the heterojunction geometry, and also at
small QW widths in the quantum well geometries.

0.0 20.0 40.0 60.0 80.0 100.0
ρ [10

10
 cm

−2
]

0.00

0.02

0.04
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0.08
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[e

2 /ε
l 0]

1/3

2/5

3/7

4/9

5/11

Heterostructure

Figure 3. The CF predictions for the gaps in the heterojunction geometry as a function of the
density (ρ) ranging from 1.0×1010 cm−2 to 1.0×1012 cm−2, for FQHE states at 1/3, 2/5, 3/7, 4/9,
and 5/11, with the filling factors indicated in the figure. The gaps are expressed ine2/εl0 where
ε is the dielectric constant of the background material (ε ≈ 13 for GaAs) andl0 is the magnetic
length.

A similar calculation for the gap was carried out by Ortalanoet alfor ν = 1/3, who obtain
a bigger gap reduction, for reasons that are not known at the moment. The pseudopotentials
from our effective interaction are in agreement with theirs, provided the Bohr radius is set
equal to the magnetic length. The gaps reported in reference [14] were for a six-particle
system whereas we have determined the thermodynamic limit, which may account for part of
the discrepancy; also, the result of reference [14] was obtained from an exact diagonalization
of the Hamiltonian as opposed to our calculations which employ the CF wave functions, but
this ought not to cause more than a few per cent difference.

4. Comparison with experiment

Figure 6 shows a comparison of our results for the heterojunction geometry with experiment
for two densities [27]. The finite thickness reduces the gaps from their pure Coulomb values
bringing them into better agreement with experiment. Figures 7 and 5 compare our theoretical
gaps with experimental gaps in square [28] and parabolic [29] quantum wells. Here, again
the gaps are reduced from their pure Coulomb values, but a substantial deviation still remains
between theory and experiment.
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Figure 4. The CF predictions for the gaps in the square-quantum-well (SQW) geometry for
densities ranging from 1.0× 1010 cm−2 to 1.0× 1012 cm−2 for quantum well widths of 150 Å,
200 Å, and 300 Å. The filling factors are shown in the figure. The labels for the axes are shown
only for 1/3 for convenience.

There are many possible sources that can cause disagreement between our theoretical
gaps and the experimental gaps. There are approximations involved in our determination of
the effective interaction, which may lead to a 20% uncertainty in the theoretical gap values [14].
Then there are effects left out in the theory, namely Landau level mixing and disorder. Landau
level mixing is likely to be most significant in the hole-type samples (the square quantum
well here [28]), due to the relatively small cyclotron energy of holes. The disorder is most
relevant perhaps in parabolic quantum wells, due to alloy disorder, which leads to relatively low
mobilities; the strong suppression of the PQW gaps relative to the computed values indicates
that disorder can be rather important quantitatively. In view of this discussion, the comparisons
of our results with heterojunction gaps are most meaningful. One message that one can take
from these comparisons is that Landau level mixing and disorder also make a sizable correction
to the excitation gaps in typical experiments. As mentioned earlier, for 5/11 and 6/13, the



7292 K Park et al

0.0 0.1 0.2 0.3 0.4
1/(2n+1)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

∆ 
[e

2 /ε
l 0]

 zero thickness limit
 CF theory+LDA at ρ1

 experiment at ρ1

CF theory+LDA at ρ2

 experiment at ρ2

1/
2

5/
11

4/
9

3/
7

2/
5

1/
3

ν

ρ1=5.0X10
10

cm
−2

ρ2=6.0X10
10

cm
−2

PQW

Figure 5. The CF predictions for the gaps in the parabolic-quantum-well (PQW) geometry for two
densities 5.0×1010 cm−2 and 6.0×1010 cm−2 as a function of filling factor (top axis). The squares
are for pure Coulomb interaction, circles for the LDA interaction, and stars are the experimental
results taken from Shayeganet al [29]. The experimental PQW is 3000 Å wide, with curvature
α = 5.33× 10−5 meV Å−2 and barrier height from the bottomV0 = 276 meV. We have set the
barrier height to infinity in our LDA calculations.

intrinsic errors in the ‘unperturbed’ CF wave functions, not yet quantified, may also be partly
responsible for the deviations between theory and experiment.

An extrapolation of the experimental gaps suggests that they might vanish at a finite
n. Certainly, any finite amount of disorder will cause such a behaviour. However, it is an
interesting question whether the gaps will vanish at a finiten even in the absence of disorder.
There is no fundamental reason that this could not happen. In our computations, while the
Coulomb gaps extrapolate to zero atν = 1/2, within numerical uncertainty, the non-zero
thickness gaps appear to vanish at a finiten (along the sequenceν = n/(2n + 1)), at least
for a straight-line fit through them. This is clearest for relatively large gap reductions, e.g. in
the heterostructure or the parabolic-quantum-well systems. These results might indeed be
indicating an intrinsic absence of FQHE forn larger than a critical value, even for an ideal
situation with no Landau level mixing and no disorder. This does not imply, however, that
the composite-fermion theory becomes invalid here, but only that composite fermions do not
show the integer QHE (IQHE), presumably because the residual inter-CF interactions become
increasingly significant as the gap decreases, finally destroying the gap altogether. (We note
that for small magnetic fields, the electron system also does not exhibit the IQHE; a better
starting point here is the Fermi sea, with the magnetic field treated as a perturbation, rather than
a filled Landau level state.) This kind of breakdown of the FQHE, if one actually occurs, will
be due to a short-range modification in the inter-electron interaction due to non-zero thickness,
to be distinguished from another possibility, discussed in the following section, which has to
do with thelong-rangebehaviour of the interaction [30].
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Figure 6. Comparison of the theoretical and the experimental gaps for the heterojunction geometry
for two different densities shown in the figures. The squares are for pure Coulomb interaction,
circles for the LDA interaction, and stars are taken from the experiment of Duet al [27].

The activation gaps can be equated to an effective cyclotron energy to define an effective
mass for the composite fermions [30]:

1 = h̄ eB
∗

m∗c
= h̄2

m∗l20

1

(2n + 1)
(12)

where we have used the fact that the effective field for composite fermions is given by
B∗ = B/(2n + 1) at ν = n/(2n + 1). On the other hand, since the gaps are determined
entirely by the Coulomb interaction (the only energy in the lowest LL constrained problem),
they must be proportional toe2/l0, implying thatm∗ ∼ √B. This would suggest that the gaps,
measured in units ofe2/εl0, are proportional to(2n+1)−1, consistent with the behaviour found
in our calculations for the Coulomb interaction. However, for the realistic gaps, the effective
mass has some filling factor dependence. Figure 8 shows the effective mass determined
from our theoretical gaps, along with the effective mass deduced from an analysis of the
resistance oscillations at smallB∗ in terms of Shubnikov–de Haas oscillations of ordinary
fermions [31, 32]. The experimental effective mass is seen to increase withn [32, 33]; our
results suggest that part of the increase may be caused by the short-distance softening of the
Coulomb interaction due to non-zero sample thickness. A logarithmic divergence of the mass
predicted by the Chern–Simons approach [30] has a different physical origin; it is governed
by the long-distance behaviour of the interaction.



7294 K Park et al

0.0 0.1 0.2 0.3 0.4
1/(2n+1)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

∆ 
[e

2 /ε
l 0]

 zero thickness limit
 CF theory + LDA
 experiment

1/
2

ν

4/
9

3/
7

2/
5

1/
3

ρh=1.6X10
11

cm
−2

SQW(d=200 X10
−8

cm)
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geometry. The squares are for pure Coulomb interaction, circles for the LDA interaction, and stars
are taken from Manoharanet al [28].
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Figure 8. The mass of the composite fermion (m∗) in units of the mass of the electron in vacuum
(me) as a function of the filling factor for a heterojunction sample with density 2.3× 1011 cm−2.
Both the mass computed from the theoretical gaps in figure 6 (circles for the realistic calculation,
squares for zero transverse thickness) and that deduced from an analysis of the SdH experiment
(triangles, from Duet al [32]) are shown.

5. Model interactions

Model interactions have been used in the past to study finite-thickness effects. There are
other reasons for investigating how the gaps behave for various types of interaction. First,
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certain analytical approaches find some forms of interaction more tractable, and our Monte
Carlo results provide a test for their validity [34]. Second, the Chern–Simons field theoretical
formulation of composite fermions finds that the CF Fermi sea behaves qualitatively differently
depending on whether the interaction is of shorter or longer range than the Coulomb one [30];
there are infrared singularities in the self-energy for the former, indicating a divergent effective
mass for composite fermions; for Coulomb interaction, a logarithmic behaviour is predicted,
whereas no divergence occurs for interactions that are of longer range than the Coulomb one.
It is plausible that some indication of this physics may be seen away from the CF sea, in the
FQHE regime. Finally, it may also be possible to actually change the form of the interaction,
e.g., by fabricating the 2D electron gas close to a parallel conducting plane. Motivated by these
considerations, we have computed the gaps for various kinds of repulsive interaction: 1/r2;
logarithmic (ln 1/r), Gaussian (exp(−r2/2)), Yukawa (exp(−r)/r), and ZDS (e2/

√
(r2 + λ2)).

The finite-size extrapolations for the gaps are shown in figure 9 for ther−2-interaction.
Figure 10 depicts the gaps for various potentials; the Coulomb results are included here
for reference. The longer-range potentials (e.g. logarithmic) have a qualitatively different
behaviour from the shorter-range potentials. In fact, there is an indication that for the latter,
the gaps may vanish at afinite n, which we believe is related to the infrared divergences
predicted by the Chern–Simons approach [30]. As stressed earlier, we are working with wave
functions which are independent of the form of the interaction, which raises the question of
the relevancy of our study to the issue of stability of the CF sea; here, due to the lack of a gap
to excitations, the wave functions, at least in their long-distance behaviour, will necessarily
be highly susceptible to changes in the interaction. We must remember, however, that the CF
wave functions are expected to be accurate so long as the gap is not too small, which is the
case for the CF states with only a few filled CF-LLs. Therefore, we believe that the trends
seen in our study are meaningful.

Figure 11 shows the gaps for the ZDS potential as a function ofλ. The gaps for fixed
values ofλ/l0 are shown in figure 12 and the effective masses derived from them in figure 13.
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Figure 9. Estimation of the thermodynamic limit of the gap from the finite-system results for the
r−2-interaction for 1/3, 2/5, 3/7, and 4/9.
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Figure 10. The activation gaps at 1/3, 2/5, 3/7, and 4/9 for several model interactions. The pure
Coulomb gaps are also shown for reference. All distances are quoted in units of the magnetic
length,l0.
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Figure 11. The activation gaps at 1/3, 2/5, 3/7, and 4/9 for the Zhang–Das Sarma potential,
e2/(r2+λ2)1/2, plotted as a function of the parameterλ. 10 is the gap for pure Coulomb interaction.

(Note thatλ/l0 is kept fixed here rather thanλ; however, since the magnetic length does
not change appreciably in the range of filling factors considered, the results are qualitatively
independent of which of the two is taken as constant.) These figures demonstrate that for the
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Figure 12. The activation gaps for several values ofλ/l0 as functions of the filling factor for the
Zhang–Das Sarma potential. The solid line is the best straight-line fit through the gaps.
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Figure 13. The ratio of the CF effective mass for the ZDS interaction (obtained from the gaps in
figure 12) to the effective mass for the Coulomb interaction for several values ofλ/l0.

ZDS potential also, similarly to the case for the more realistic potentials, a straight-line fit
through the gaps has a negative intercept, and the effective mass increases as the half-filled
Landau level is approached. The overall qualitative behaviour is quite similar to that found
in the more sophisticated LDA calculation; a comparison of the two figures shows that the
appropriate value forλ for the samples in the experiments of Duet al [27] is λ/l0 ≈ 1, as also
argued by Morf [17].
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6. Conclusions

We have carried out the most comprehensive study to date of the effect of non-zero transverse
width on activation gaps for the FQHE states. The effective interaction between electrons has
been computed by means of the density functional theory in the LDA, which is then used to
determine the gaps for CF states with up to five filled CF-LLs (corresponding to FQHE at
1/3, 2/5, 3/7, 4/9, and 5/11). Several different geometries are considered, and the theoretical
results are compared to experiment. It is concluded that for typical experimental parameters,
the non-zero thickness reduces the gaps by 30%, which does not fully account for the observed
gaps. This underscores the quantitative importance of effects left out in our study.

We have also considered a number of model interactions, and discovered a qualitative
difference depending on whether the interaction is of longer or shorter range than the Coulomb
one. We find that the gaps for the FQHE states decrease faster for the latter, as the CF sea
is approached, which is consistent with expectations based on the Chern–Simons formulation
of the composite-fermion sea [30], according to which the infrared behaviour of the CF sea
exhibits singularities for interactions of shorter range than the Coulomb one but is well behaved
for interactions of longer range than the Coulomb one.
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